Showing all 18 results

Desulfurization Catalyst containing Zinc Oxide Nanoparticles

$0.00

Introduction

Sulfur compounds are one of the main pollutants of the air and chemical processes which damage human health, water resources, catalysts and other devices. Removing sulfur compounds is one of the main processes in fossil fuel applications. Various inorganic sorbents are used to remove H2S in such applications. Among sorbents, zinc oxide is one of the most important sorbents for removal of H2S at moderate temperatures. This advantage is due to the fact that the thermodynamics of the ZnO-H2S reaction is more favorable than other desulfurizing sorbents and also has a higher sulfur absorption capability. Nanotechnology, relying on its unique features, has improved the performance and properties of the products.

Desulfurization Catalyst containing Zinc Oxide Nanoparticles

$0.00

Introduction

Sulfur compounds are one of the main pollutants of the air and chemical processes which damage human health, water resources, catalysts and other devices. Removing sulfur compounds is one of the main processes in fossil fuel applications. Various inorganic sorbents are used to remove H2S in such applications. Among sorbents, zinc oxide is one of the most important sorbents for removal of H2S at moderate temperatures. This advantage is due to the fact that the thermodynamics of the ZnO-H2S reaction is more favorable than other desulfurizing sorbents and also has a higher sulfur absorption capability. Nanotechnology, relying on its unique features, has improved the performance and properties of the products.

Desulfurization Catalyst containing Zinc Oxide Nanoparticles

$0.00

Introduction

Sulfur compounds are one of the main pollutants of the air and chemical processes which damage human health, water resources, catalysts and other devices. Removing sulfur compounds is one of the main processes in fossil fuel applications. Various inorganic sorbents are used to remove H2S in such applications. Among sorbents, zinc oxide is one of the most important sorbents for removal of H2S at moderate temperatures. This advantage is due to the fact that the thermodynamics of the ZnO-H2S reaction is more favorable than other desulfurizing sorbents and also has a higher sulfur absorption capability. Nanotechnology, relying on its unique features, has improved the performance and properties of the products.

Desulfurization Nanocatalyst

$0.00

Introduction

 Oxides of sulfur and nitrogen are the main air pollutants that are also responsible for acid rain. Excessive sulfur content in petroleum fractions such as naphtha, in addition to causing air pollutants, can corrode tanks, reactors, pipes and fittings. Currently desulfurization is carried out using desulphurization catalysts adjacent to hydrogen; thus at a certain temperature and pressure, as well as a specific proportion of hydrogen, sulfur atoms convert to hydrogen sulfide. Catalysts based on γ–alumina are commonly used for desulphurization. Alumina has various applications including ceramic membranes, paints, refinery and chemical catalysts, pollution control and base catalyst. The mesoporous γ–alumina with pore diameter in the range of 2 to 50 nm due to its high specific surface area, high porosity, good thermal stability and suitable pore distribution is used as the most common base catalyst in desulphurization.

Desulfurization Nanocatalyst

$0.00

Introduction

 Oxides of sulfur and nitrogen are the main air pollutants that are also responsible for acid rain. Excessive sulfur content in petroleum fractions such as naphtha, in addition to causing air pollutants, can corrode tanks, reactors, pipes and fittings. Currently desulfurization is carried out using desulphurization catalysts adjacent to hydrogen; thus at a certain temperature and pressure, as well as a specific proportion of hydrogen, sulfur atoms convert to hydrogen sulfide. Catalysts based on γ–alumina are commonly used for desulphurization. Alumina has various applications including ceramic membranes, paints, refinery and chemical catalysts, pollution control and base catalyst. The mesoporous γ–alumina with pore diameter in the range of 2 to 50 nm due to its high specific surface area, high porosity, good thermal stability and suitable pore distribution is used as the most common base catalyst in desulphurization.

Desulfurization Nanocatalyst

$0.00

Introduction

 Oxides of sulfur and nitrogen are the main air pollutants that are also responsible for acid rain. Excessive sulfur content in petroleum fractions such as naphtha, in addition to causing air pollutants, can corrode tanks, reactors, pipes and fittings. Currently desulfurization is carried out using desulphurization catalysts adjacent to hydrogen; thus at a certain temperature and pressure, as well as a specific proportion of hydrogen, sulfur atoms convert to hydrogen sulfide. Catalysts based on γ–alumina are commonly used for desulphurization. Alumina has various applications including ceramic membranes, paints, refinery and chemical catalysts, pollution control and base catalyst. The mesoporous γ–alumina with pore diameter in the range of 2 to 50 nm due to its high specific surface area, high porosity, good thermal stability and suitable pore distribution is used as the most common base catalyst in desulphurization.

Gas Turbine Air Filter0

$0.00

Introduction

Proper air filtration is critical to the overall performance and reliability of gas turbines. The latest evolution in the filtration industry is the use of nanotechnology in this field. With this technique, the surface of large cellulosic or synthetic textiles (usually 10 to 30 micrometers in diameter) is covered with a layer of ultra-fine textiles (typically 50 to 400 nanometers in diameter). There are two different methods for separating particles in the filter paper structure.

In-depth filtration, in which particles are separated in different layers of paper according to their size; and surface filtration, in which all particles are separated on the surface of paper. In Behran Co. before pleating process, the filter paper is covered with a layer of Polyamide textiles with diameter of less than 100 nanometer by using electrospinning process.

Gas Turbine Air Filter0

$0.00

Introduction

Proper air filtration is critical to the overall performance and reliability of gas turbines. The latest evolution in the filtration industry is the use of nanotechnology in this field. With this technique, the surface of large cellulosic or synthetic textiles (usually 10 to 30 micrometers in diameter) is covered with a layer of ultra-fine textiles (typically 50 to 400 nanometers in diameter). There are two different methods for separating particles in the filter paper structure.

In-depth filtration, in which particles are separated in different layers of paper according to their size; and surface filtration, in which all particles are separated on the surface of paper. In Behran Co. before pleating process, the filter paper is covered with a layer of Polyamide textiles with diameter of less than 100 nanometer by using electrospinning process.

Gas Turbine Air Filter0

$0.00

Introduction

Proper air filtration is critical to the overall performance and reliability of gas turbines. The latest evolution in the filtration industry is the use of nanotechnology in this field. With this technique, the surface of large cellulosic or synthetic textiles (usually 10 to 30 micrometers in diameter) is covered with a layer of ultra-fine textiles (typically 50 to 400 nanometers in diameter). There are two different methods for separating particles in the filter paper structure.

In-depth filtration, in which particles are separated in different layers of paper according to their size; and surface filtration, in which all particles are separated on the surface of paper. In Behran Co. before pleating process, the filter paper is covered with a layer of Polyamide textiles with diameter of less than 100 nanometer by using electrospinning process.

Nanofluid Coolant for Power Plant

$0.00

Introduction

More efficient heat transfer systems are increasingly preferred because of the accelerating miniaturization, on the one hand, and the ever-increasing heat flux, on the other hand. The poor heat transfer properties of the common fluids like water compared to most solids is a primary obstacle to the high compactness and effectiveness of heat exchangers. Passive enhancement methods such as enhanced surfaces are often employed in thermo-fluid systems. Therefore, the development of advanced heat transfer fluids with higher thermal conductivity and improved heat transfer is in strong demand. Nanofluids are heat transfer liquids with dispersed nanoparticles. The effectiveness of heat transfer enhancement has been found to be dependent on the amount of dispersed particle, material type, particle shape, etc.

Nanofluid Coolant for Power Plant

$0.00

Introduction

More efficient heat transfer systems are increasingly preferred because of the accelerating miniaturization, on the one hand, and the ever-increasing heat flux, on the other hand. The poor heat transfer properties of the common fluids like water compared to most solids is a primary obstacle to the high compactness and effectiveness of heat exchangers. Passive enhancement methods such as enhanced surfaces are often employed in thermo-fluid systems. Therefore, the development of advanced heat transfer fluids with higher thermal conductivity and improved heat transfer is in strong demand. Nanofluids are heat transfer liquids with dispersed nanoparticles. The effectiveness of heat transfer enhancement has been found to be dependent on the amount of dispersed particle, material type, particle shape, etc.

Nanofluid Coolant for Power Plant

$0.00

Introduction

More efficient heat transfer systems are increasingly preferred because of the accelerating miniaturization, on the one hand, and the ever-increasing heat flux, on the other hand. The poor heat transfer properties of the common fluids like water compared to most solids is a primary obstacle to the high compactness and effectiveness of heat exchangers. Passive enhancement methods such as enhanced surfaces are often employed in thermo-fluid systems. Therefore, the development of advanced heat transfer fluids with higher thermal conductivity and improved heat transfer is in strong demand. Nanofluids are heat transfer liquids with dispersed nanoparticles. The effectiveness of heat transfer enhancement has been found to be dependent on the amount of dispersed particle, material type, particle shape, etc.

Naphtha Reforming Nanocatalyst for CCR unit

$0.00

Introduction

Catalytic reforming is a major conversion process in petroleum refinery which converts low octane naphthas into higher octane reformate products for gasoline blending and aromatic rich reformate for aromatic production. To perform the process correctly and efficiently, as well as to prevent coke making, the process structure and catalyst must be selected optimally. The efficient structure of the reforming reactors is continues catalytic reforming (CCR). In this process the catalyst is key component. The γ–alumina based catalyst is amongst the catalysts that has a long history in catalytic reforming. In naphtha reforming, γ–alumina is responsible for acidic interactions; moreover, the dehydrogenation reactions are performed by some metals which are impregnated to the catalyst. Therefore, alumina-based catalyst is a very suitable candidate for catalytic reforming.

Naphtha Reforming Nanocatalyst for CCR unit

$0.00

Introduction

Catalytic reforming is a major conversion process in petroleum refinery which converts low octane naphthas into higher octane reformate products for gasoline blending and aromatic rich reformate for aromatic production. To perform the process correctly and efficiently, as well as to prevent coke making, the process structure and catalyst must be selected optimally. The efficient structure of the reforming reactors is continues catalytic reforming (CCR). In this process the catalyst is key component. The γ–alumina based catalyst is amongst the catalysts that has a long history in catalytic reforming. In naphtha reforming, γ–alumina is responsible for acidic interactions; moreover, the dehydrogenation reactions are performed by some metals which are impregnated to the catalyst. Therefore, alumina-based catalyst is a very suitable candidate for catalytic reforming.

Naphtha Reforming Nanocatalyst for CCR unit

$0.00

Introduction

Catalytic reforming is a major conversion process in petroleum refinery which converts low octane naphthas into higher octane reformate products for gasoline blending and aromatic rich reformate for aromatic production. To perform the process correctly and efficiently, as well as to prevent coke making, the process structure and catalyst must be selected optimally. The efficient structure of the reforming reactors is continues catalytic reforming (CCR). In this process the catalyst is key component. The γ–alumina based catalyst is amongst the catalysts that has a long history in catalytic reforming. In naphtha reforming, γ–alumina is responsible for acidic interactions; moreover, the dehydrogenation reactions are performed by some metals which are impregnated to the catalyst. Therefore, alumina-based catalyst is a very suitable candidate for catalytic reforming.

Turbine Inlet Air Filter

$0.00

Introduction

Air filters are used to prevent damage to power plant equipment through dust particles, contaminants and other harmful particles in the air. The main goal is the maximum absorption of dust particles from the air. Nanofibers with lower thickness and higher specific surface area than that of conventional fibers have many applications in filtration and electrospinning is the most efficient process for production of continuous fibers from synthetic or natural polymers. Electrospinning is used to improve the performance and efficiency of the filter. This technology while increases the efficiency of dust absorption, avoid high pressure drop. Fibers produced by electrospinning have a diameter of less than 100 nm and cover the surface of the filter paper uniformly.

Turbine Inlet Air Filter

$0.00

Introduction

Air filters are used to prevent damage to power plant equipment through dust particles, contaminants and other harmful particles in the air. The main goal is the maximum absorption of dust particles from the air. Nanofibers with lower thickness and higher specific surface area than that of conventional fibers have many applications in filtration and electrospinning is the most efficient process for production of continuous fibers from synthetic or natural polymers. Electrospinning is used to improve the performance and efficiency of the filter. This technology while increases the efficiency of dust absorption, avoid high pressure drop. Fibers produced by electrospinning have a diameter of less than 100 nm and cover the surface of the filter paper uniformly.

Turbine Inlet Air Filter

$0.00

Introduction

Air filters are used to prevent damage to power plant equipment through dust particles, contaminants and other harmful particles in the air. The main goal is the maximum absorption of dust particles from the air. Nanofibers with lower thickness and higher specific surface area than that of conventional fibers have many applications in filtration and electrospinning is the most efficient process for production of continuous fibers from synthetic or natural polymers. Electrospinning is used to improve the performance and efficiency of the filter. This technology while increases the efficiency of dust absorption, avoid high pressure drop. Fibers produced by electrospinning have a diameter of less than 100 nm and cover the surface of the filter paper uniformly.